
COAXIAL CABLE

100% CERTIFIED COAXIAL CABLE

The step ahead undertaken by Televés to improve its service and technical excellence, is now reflected in this new challenge. The new scenario arisen with the LTE/4G implementation, has caused Televés assume its role of guide and leader of the sector.

The certification of the coaxial cable and optical fiber, is a demonstration of Televés' commitment to the quality, European manufacturing and service to installers. For this reason, Televés is the only European company with the ability and knowledge to deal with this innovative service.

We do believe that the best way to ensure the coaxial cable technical characteristics is by a quality close control in all its manufacturing processes.

In the field of LTE/4G, only certified coaxial cable will ensure the integrity of the signal.

services shown below:

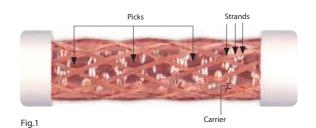
The new facilities in Televés are designed to carry out all the

A cable that is marked Televés, no doubt is a **CERTIFIED CABLE**

Flexibility in manufacturing and servicing of markets

Close control of both quality and manufacturing processes of coaxial cable allows to offer our customers a whole range of benefits:

- Availability: Through this production model, stock availability of our warehouse is fully guaranteed. Selfmanagement in the final production of the coaxial cable and the productive machinery involved, make it an item without problems in terms of stock lack and fast delivering.
- Flexibility: The factory is prepared to modify their production lines according to the needs of customers, regardless of the size and type of cable used.
- Optical Fiber Certification: Our new facilities have been designed to be compatible for manufacturing both coaxial cable and optical fiber. Optical Fiber Certification will incorporate the corresponding set of tools and procedures to assess the quality of the fiber to be supplied.


COAXIAL CABLE Televes

100% CERTIFIED COAXIAL CABLE

Control de calidad basado en la certificación de medidas

El control de calidad de un cable ha de aplicarse a cada uno de los elementos que lo configuran.

A check is made of the mechanical and electrical characteristics of all the manufactured cable. These tests are carried out along the manufacturing process of reels of coaxial cable, so that each one of the reels sent to our customer is checked and registered.

The above mentioned tests are undertaken on the following parameters:

- Copper quality: T100 type coaxial cables are made of copper. Unlike other cables made of cladded copper steel, the T100 is characterized by its excellent performance in DC, and in the transport of the signal at high and low frequencies.
- Quality of gas injection (foam): Televés cables feature EXPANDED DIELECTRIC, made of polyethylene being expanded by injection of gas within it. Coaxial cable life tests, during 21 days at 40 °C and humidity 93%, have proved that cable attenuation increasing is less than 5%.
 - Other coaxial cables featuring chemically expanded dielectric have increased their attenuation almost 70%.
- Foil made of copper and polyester: Copper plus polyester laminated film guarantees an excellent conductivity and shielding against interferences. Polyester film ensures the right flexibility of the assembly when it is being bent.
- Braided mesh: It is made up with 16 "groups of wires" (carriers) and 8 "wires" (strands) of copper each group, Ø 0.11 mm each strand (Fig.1); the T100 braid coverage achieved is higher than 73%. Braid covering is the most important parameter in terms of shielding.
- Outer sheath quality: Cable jacket protects against environmental conditions like sunlight, water, heat, chemicals. Televés cables are manufactured in three jacketing materials: PVC, PE and LSFH. Within the parameters to be evaluated in the outer covering is that of homogeneity of coverage.

Whenever the sheath layout is not symmetric around the center of the cable (Fig. 2), means that there are thickness variations in the sheath that weaken the cable protection against external aggressions. Televés guarantees a symmetrical coverage over the entire length of the cable.

- Attenuation vs length: Attenuation tests indicate the continuity of the cable impedance. This ensures uniformity of impedance in order not to distort the signals in their journey through the cable. It is therefore a way of preserving the integrity of digital packets present in the distribution network and minimizing rippling in the network response and hence the signal echoes.
- Continuity: Continuity tests are performed in both inner conductor and braid. The first tests indicate the purity of the inner conductor, while the tests on the braid can lead to alarms on the cable shielding.
- Traceability: The internal control all production processes lead to a personalized information of all coaxial cable reels manufactured.

All the above tests are managed by proprietary software that detects any impact on the cable manufacturing and can accurately identify the stretch where non-compliance occurs.

This huge investment made by Televés for coaxial cable certification is based on the need to provide satisfaction and security to the installer against LTE/4G signals.

Fig.2

COAXIAL CABLE KEYS

Coaxial cable is an essential element of the system that determines the quality of the signal.

INNER CONDUCTOR

It plays an important role in the cable attenuation, the higher its diameter the lower the cable attenuation.

On the other hand it contributes to improve its mechanical tensile strength properties.

Inner conductors are manufactured in two materials: copper (Cu) and copper-clad steel (CCS).

Cu (copper), low electrical resistance and excellent response in both low and high frequencies.

CCS (copper-clad steel), better mechanical behavior but worst electrical resistance and attenuations.

Good quality of the inner conductor together with an appropriate expanded dielectric guarantee velocity ratios higher than 80% thus making these cables fully compatible with digital transmissions.

Low electrical DC resistance is an important parameter to take into account, e.g. when the cable is used to power devices like DiSEqC switches where the voltage controls their capacity to select horizontal or vertical polarisation; amplifiers being DC remote-powered through the coaxial cable, multi-switches, etc.

Regarding the inner conductor, from good to worse response the order is:

- 1. Copper (Cu)
- 2. Copper-clad aluminium (CCA)
- 3. Copper-clad steel (CCS)

DIELECTRIC

Televes cables feature **expanded dielectric**, made of polyethylene being expanded by injection of gas within it.

Coaxial cable life tests, during 21 days at 40°C and humidity 93%, have proved that cable attenuation increasing is less than 5%

Other coaxial cables featuring chemically expanded dielectric have increased their attenuation almost 70%.

SHIELDING FOIL

Two types are available:

- A) Copper+Polyester.
- B) Aluminium+Polyester+Aluminium.

Copper+polyester laminated film guarantees an excellent conductivity and shielding against interferences.

Polyester film ensures the right flexibility of the assembly when it is being bent.

The shielding foil combined with the additional braid provides higher shielding efficiency throughout frequency

spectrum, since together they get good strength, low DC electrical resistance and 100% foil coverage.

2nd shielding foil is only available in SK2000 PLUS cables, providing additional shielding efficiency.

BRAID

Braid provides both a great cable integrity and good flexibility. It is especially effective against low frequency interferences.

On the other hand, braid has **lower DC resistance** than foil and together with the inner conductor determines the electrical resistance of the cable.

From low to higher resistance, materials are classified:

- 1. Copper (Cu)
- 2. Copper-clad aluminium (CCA)
- 3. Copper-clad steel (CCS)

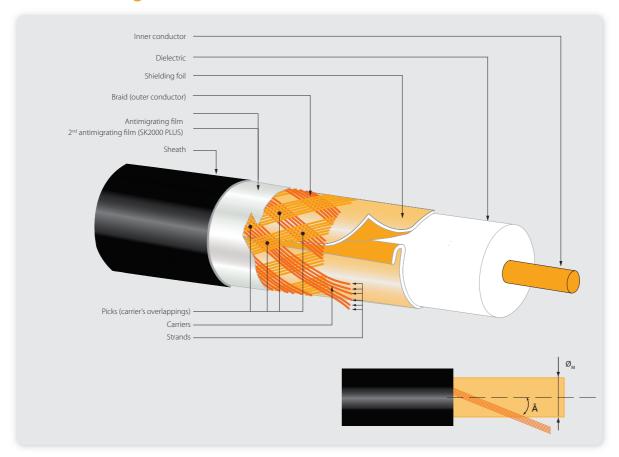
ANTIMIGRATING FILM

Prevents migration of sheath additives and humidity within the cable, thus avoiding deterioration of the cable characteristics.

OUTER SHEATH

Cable jacket protects against environmental conditions like sunlight, water, heat, chemicals. Televes cables are manufactured in three jacketing materials: PVC, PE and LSFH.

PVC (*Polivynyl Clorhidre*) is suitable for **indoor use**. It features a good flexibility as well as good response against heat. Nevertheless it deteriorates rapidly if it is exposed to sunlight or water.


PE (*Polyethylene*) is the right solution for **outdoor use** since it is waterproof.

LSFH (Low Smoke Free Hallogen) strongly recommended for **especial installations** like hospitals, schools, airports, tunnels, shopping centers, hotels, theatres, transport stations; or buildings that receive/house high valued patrimonial objects: libraries, art galleries, museums; or control systems, industrial installations, alarms, etc.

Cable sheath is permanent marked all along it, meter by meter, with type, reference, length marks, ...

COAXIAL CABLE KEYS

Braid covering calculation

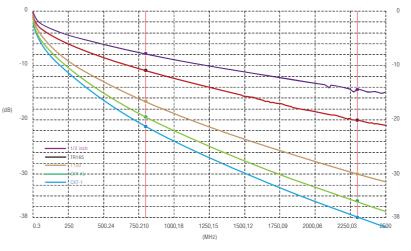
Coaxial cable specifications							
Frecuency band	Sci	reening (d	B)				
(MHz)	class A +	class A	class B				
30 – 1000	≥95	≥85	≥75				
1000 - 2000	≥85	≥75	≥65				
2000 - 3000	≥75	≥65	≥55				

% coverage = (2·F-F²)·100

where:

 $F = N_S \cdot N_P \cdot \emptyset_S \cdot / sen \hat{A}$, and

 $\hat{A} = \tan^{-1} 2 \cdot \pi \cdot (\emptyset_B + 2 \cdot \emptyset_S) \cdot (N_P/N_C)$


N_C: No. of carriers

 N_S : No. of strands per carrier

Np: No. of picks

 \emptyset_{S} : strand diameter in inches

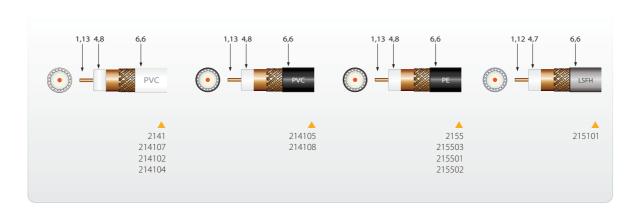
 \mathcal{O}_B : diameter of structure beneath braid \hat{A} : angle between cable axis and carrier

ATTENUATION CURVES FOR DIFFERENT TYPES OF COAXIAL CABLES

PRODUCT RANGE

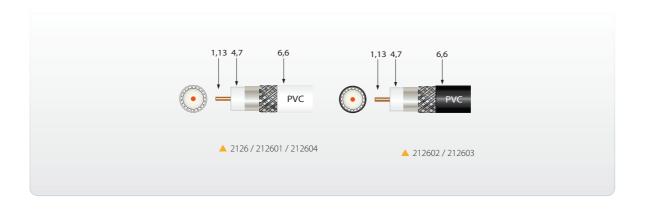
Coaxial cables:

 $T-100\ /\ T-200\ PLUS\ /\ SK2000\ PLUS\ /\ CXT-5\ /\ TR-165\ /\ 1/2"\ /\ CXT\ /\ CXT-50\ /\ CXT-60\ /\ CXT-1$

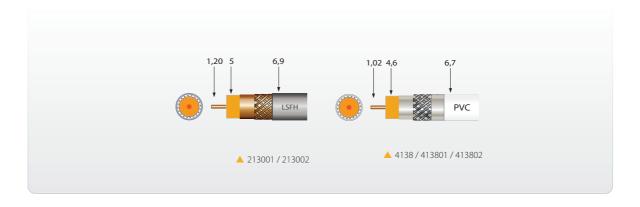


			T-100				T-200 PLUS	SK2000 PLUS
2141 214107	214102 214104	214105 2155 215503	214108 215501 215502	215101	2126 212601 212604	212602 212603	213001 213002	4138 413801
	I,			1	.1	1		1
					M	17		M
								y.
						ш		

INNER CONDUCTOR	- BRAID COMPO	SITION	COPPER - COPPER										
Televes Model			T-100										
References			2141	214107	214105	214102	214104	214108	2155	215503	215501	215502	215101
	Ø	mm		1,13							1,12		
Inner Conductor	Inner Conductor material		Copper							Copper			
	resistance	Ω/Km					2	0					18
Districts	Ø	mm					4	,8					4,7
Dielectric	material	-					Foa	m Polyet	hylene				
Overlapping shieldin	g foil	composition					Cop	oper + Po	lyester				
2	resistance	Ω/Km		<20			<12		<	20	<	13	≤14
Braid	material	-		Copper									
Antimigrating film			Yes								Yes		
Petrol jelly			No						No				
Ø		mm		6,6					6,6				
Outer sheath	color	-	White Bla		Black	Wh	ite			Black			Grey
	material	-			P\	VC				Р	EE		PVC - LSFH
Minimum bending ra	dius	mm	33								33		
Screening efficiency		dB						>75					
Capacitance		pF/m						55					
Environmental use					Ind	loor				Out	door		Indoor
Packaging	meters/reel	m	100	250	100	100	250	100	100	250	100	250	100
	200						0,	08					0,07
	500						0,	12					0,12
	800						0,	15					0,15
Frequency	1000	10.4					0,	18					0,17
Attenuation (MHz)	1350	dB/m					0,	21					0,20
	1750						0,	24					0,23
	2050						0,	27					0,25
	2300						0,	28					0,27

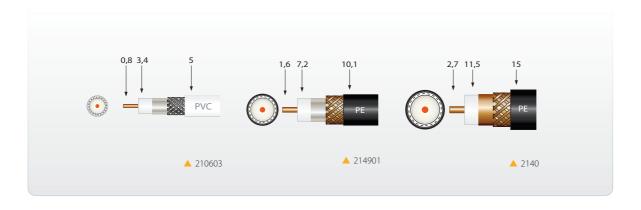

2300

INNER CONDUCTOR - BR	RAID COMPOSITION			COPPER	- CCS (copper-cla	nd steel)			
Televes Model					T-100				
References			2126 212601 212602 212603 212604						
	Ø	mm			1,13				
Inner conductor	material	-			Copper				
	resistance	Ω/Km	<20						
Dielectric	Ø	mm			4,7				
Dielectric	material	-		F	oam Polyethylen	2			
Overlapping shielding for	oil	composition		Aluminiu	m + Polyester + A	luminium			
Braid	resistance	Ω/Km			<27				
Didiu	material	-		CC	S (copper-clad ste	el)			
Antimigrating film					No				
Petrol jelly			No						
Ø		mm	6,6						
Outer sheath	color	-	White Black				White		
	material	-	PVC						
Minimum bending radiu	IS	mm	33						
Screening efficiency		dB	>75						
Capacitance		pF/m			55				
Environmental use					Indoor				
Packaging	meters/reel	m	100	250	250	100	250 Easy Box		
	200				0,08				
	500				0,13				
	800		0,16						
Frequency	1000	dB/m	0,19						
Attenuation (MHz)	1350		0,22						
	1750				0,25				
	2050				0,28				
			-,,20						

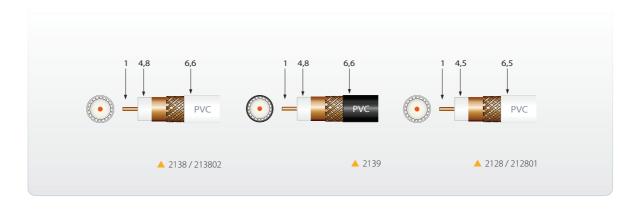

0,30

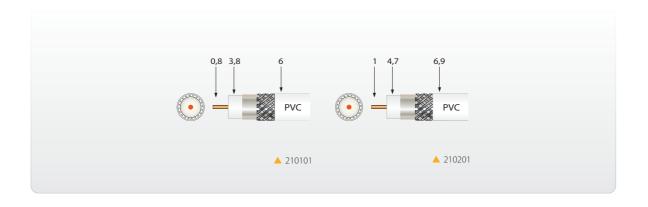
INNER CONDUCTOR	- BRAID COMPOSIT	ION	COPPER -	COPPER	COPPER	COPPER - CCS (copper-clad steel)			
Televes Model			T-200 PLUS Sk			SK2000 PLUS			
D. f			213001	213002	4138	413801	413802		
References			Class			Class +			
	Ø	mm	1,2	20		1,02			
Inner conductor	material	-	Сор	per		Copper			
	resistance	Ω/Km	< '	16		22			
Dielectric	Ø	mm	5,	0		4,6			
Dielectric	material	-	Foam Poly	vethylene	Fe	oam Polyethyle	ne		
Overlapping shieldin	ıg foil	composition	Copper +	Polyester	Alı	uminium+Polye	ster		
Braid	resistance	Ω/Km	< '	12	<11				
braiu	material	-	Copper		opper CCS (copper-clad ste		CCS (copper-clad steel)		teel)
2ª Overlapping shield	ding foil	composition	No		Aluminium+Polyester		ster		
Antimigrating film			Yes			No			
Petrol jelly			N	No					
	Ø	mm	6,9		6,7				
Outer sheath	color	-	Grey (RA	AL7001)	White				
	material	-	PVC I	_SFH		PVC			
Minimum bending ra	adius	mm	34	,5		33			
Screening efficiency		dB	>75 (1	>75 (1-2GHz) >85 (1-2GH		5 (1-2GHz) >85 (1-2GHz)		,	
Capacitance		pF/m	5.		55				
Environmental use	nvironmental use		Inde	oor		Indoor			
Packaging	meters/reel	m	100	250	100	500	250		
	200		0,0)7		0,08			

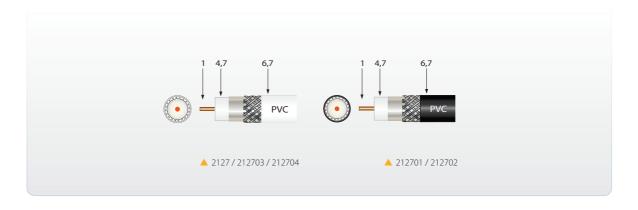
200 500 800	200		0,07	0,08
	500		0,12	0,14
		0,15	0,18	
Frequency	requency 1000	dB/m	0,17	0,21
Attenuation (MHz)	1350	UD/III	0,20	0,24
	1750		0,23	0,28
	2050		0,25	0,30
	2300		0,27	0,32

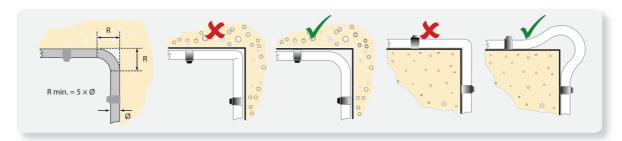


INNER CONDUCTOR -	BRAID COMPOSITIO	N	(0	COPPER - CCS copper-clad stee	el)	COPPER	- COPPER		
Televes Model				CTX-5 (5 mm) *		TR-165	1/2"		
References			210603	210602	210601	214901	2140		
	Ø	mm	Considerable Consi			1,63	2,7		
Inner conductor material		-		.,	Со	pper			
	resistance	Ω/Km		<37		9	3,2		
	Ø	mm		3,4		7,2	11,5		
Dielectric	material				Foam Po	lyethylene			
Overlapping shielding	g foil		A	lu+Polyester+A	llu	Alu+ Polyester + Alu	Copper+Polyeste		
D I	resistance	Ω/Km	<	35	<28	7,2	7		
Braid	material	-	CCS	(copper-clad s	teel)	Cop	pper		
Antimigrating film			No			No	No		
Petrol jelly		No			No	Yes			
Outer sheath	Ø	mm	5			10,1	15		
	color	-	White			Bla	ack		
	material	-	PVC			P	E		
Minimum bending ra	dius	mm		25		50	50 75		
Screening efficiency		dB			>	75			
Capacitance		pF/m		53		55	55		
Environmental use				Indoor		Outdoor	Outdoor / CATV		
Packaging	meters/reel	m	100	150 (Plas	tified coil)	250	500		
	200			0,11		0,05	0,03		
	500			0,19		0,10	0,05		
	800			0,23		0,12	0,07		
Frequency	1000	ID (0,26		0,14	0,08		
Attenuation (MHz)	1350	dB/m		0,31		0,17	0,10		
	1750			0,35		0,19	0,12		
	2050			0,39		0,20	0,13		
	2300		0,42			0,22	0,14		

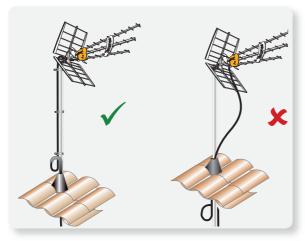



INNER CONDUCTOR - B	RAID COMPOSITIO	N	COPPER - C	CS (copper-clad	aluminium)		R - CCS clad steel)
Televes Model					CXT		
References			2138	213802	2139	2128	212801
References						Class	
	Ø	mm		1			1
Inner conductor	er conductor material -			Copper		Cop	oper
	resistance	Ω/Km		23		<	23
Dielectric	Ø	mm		4,8		4	,5
Dielectric	material	-		Foam Polyethylen	e	Foam Pol	yethylene
Overlapping shielding	foil			Copper +Polyeste	r	Aluminium	+ Polyester
Braid	resistance	Ω/Km		35		<	23
Dialu	material	-	CCS (copper-clad alum	inium)	CCS (copper-clad steel)	
Antimigrating film	Antimigrating film			No	No		
Petrol jelly		No			No		
	Ø mm			6,6		6	,5
Outer sheath	color	-	Wł	nite	Black	WI	nite
	material	-		PVC PVC		VC	
Minimum bending rad	ius	mm	33			33	
Screening efficiency		dB		>75		>75	
Capacitance		pF/m		55		54	
Environmental use				Indoor		Indoor	
Packaging	meters/reel	m	100	250	100	100	250
	200			0,09		0,	08
	500			0,14		0,	14
	800		0,18			0,	18
Frequency	1000	JD (0,20			0,	21
Attenuation (MHz)			0,23			0,	25
	1750			0,27		0,	29
	2050			0,29		0,	32
	2300			0,31		0,35	

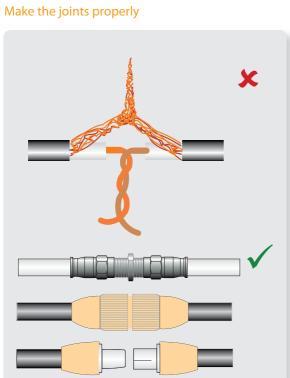

INNER CONDUCTOR - BF	AID COMPOSITION	1	CCS (copper-clad s	teel) - ALUMINIUM	
Televes Model			CXT-50	CXT-60	
References			210101	210201	
	Ø	mm	0,8	1,0	
Inner conductor	material	-	CCS (coppe	r-clad steel)	
	resistance	Ω/Km	< 140	< 95	
Dielectric	Ø	mm	3,8	4,7	
Dielectric	material	-	Foam Pol	yethylene	
Overlapping shielding for	oil	composition	Aluminium +Poly	ester+Aluminium	
Braid	resistance	Ω/Km	< 32	< 30	
bidiu	material	-	Alum	inium	
Antimigrating film			N	lo	
Petrol jelly			N	lo	
	Ø	mm	6,0	6,9	
Outer sheath	color	-	Wh	nite	
	material	-	P\	/C	
Minimum bending radiu	IS	mm	30,0	34,5	
Screening efficiency		dB	≥ 65 (2-	3 GHz)	
Capacitance		pF/m	5	4	
Environmental use			Ind	oor	
Packaging	m /reel	m	100	100	
	200		0,11	0,09	
	500		0,18	0,15	
	860		0,23	0,19	
Frequency	1000	dP/m	0,26	0,21	
Attenuation (MHz)	1350	dB/m	0,30	0,25	
	1750		0,35	0,29	
	2050		0,38	0,32	
	2300		0,41	0,34	

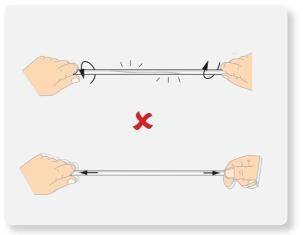


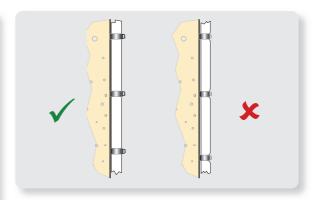
INNER CONDUCTOR - BR	AID COMPOSITION	N		CCS (cop	per-clad steel) - ALI	JMINIUM			
Televes Model					CXT-1				
References			2127	212703	212704	212701	212702		
	Ø	mm			1				
Inner conductor	material	-		C	CS (copper-clad ste	el)			
	resistance	Ω/Km			<120				
Dielectric	Ø	mm			4,7				
Dielectric	material	-			Foam Polyethylene				
Overlapping shielding for	oil			A	luminium + Polyest	er			
Braid	resistance	Ω/Km			<30				
Didiu	material	-			Aluminium				
Antimigrating film					No				
Petrol jelly	Petrol jelly			No					
	Ø	mm			6,7				
Outer sheath	color	-	White Black						
	material	-			PVC				
Minimum bending radiu	ıs	mm	33,5						
Screening efficiency		dB	>75						
Capacitance		pF/m			54				
Environmental use					Indoor				
Packaging	meters/reel	m	100	250	500	100	250		
	200				0,09				
	500				0,15				
	800			0,20					
Frequency	1000	ID / · ·			0,23				
Attenuation (MHz)	1350	dB/m			0,27				
	1750				0,32				
	2050				0,35				
	2300				0,37				



INSTALLATION TIPS


Keep in mind that coaxial cable has a minimum bending radius to be respected.


Fix coaxial cable correctly


A coaxial cable is not an electrical cable.

Do not twist or strech coaxial cable in excess

Use suitable cable clips

Do not step on the coaxial cable.

